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ABSTRACT

Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit
vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two

stars tracked by two star trackers for fine attitude determination. Existing closed-form attitude estimates based on Wahba's

optimality criterion for two arbitrarily weighted observations are somewhat slow to evaluate. This paper presents two new

fast quaternion attitude estimation algorithms using two vector observations, one optimal and one suboptimal. The

suboptimal method gives the same estimate as the TRIAD algorithm, at reduced computational cost. Simulations show that

the TRIAD estimate is almost as accurate as the optimal estimate in representative test scenarios.

INTRODUCTION

Suppose that we have measured two unit vectors b_ and b2 in the spacecraft body frame, e.g. unit vectors along the line of

sight to a star or the Sun, or along the Earth's magnetic field. We consider only unit vectors because the length of the vector

has no information directly relevant to attitude determination. Each of these unit vectors contains two independent scalar

pieces of attitude information. The spacecraft attitude is represented by a 3×3 proper orthogonal matrix A, i.e. ArA = I, the

3×3 identity matrix, and det A = 1. Since A is thus an element of the three-parameter _oup SO(3), two unit vector

measurements contain one more piece of information than is necessary to determine the attitude matrix.

It is also necessary to know the components of the two measured vectors rt and r2 in some reference frame. The reference

frame is usually taken to be an inertial frame, but this is not necessary. One can use a rotating frame such as the frame
referenced to the orbit normal vector and the local vertical. The attitude matrix to be determined is the matrix that rotates

vectors from the reference frame to the spacecraft body frame. Thus we would like to find an attitude matrix such that

Ar l = b 1

and
Ar 2 = b 2 .

This is not possible in general, however, for Eq. (1) implies that

b t .b 2 = (Ar_).(Ar2) = r_ .r 2.

This equality is true for error-free measurements, but is not generally true in the presence of measurement errors. All
reasonable two-vector attitude determination schemes give the same estimate when Eq. (2) is valid.

It is clear from simple counting arguments that the two independent scalar pieces of information contained in a single vector
measurement cannot determine the attitude uniquely. More concretely, if the attitude matrix A obeys Eq. (l a), then so does

the matrix R(b_,O_)AR(r_,¢r), for any Oband Or, where R(e,0) denotes a rotation by angle ¢ about the axis e. This also
makes it clear that the attitude is not uniquely determined if either the pair {bt, b_ } or the pair { r_, r, } is collinear.

The earliest algorithm for determining spacecraft attitude from two vector measurements was the TRIAD algorithm _'-',which

is simple to implement but does not treat the information in the two observations optimally. Many optimal estimators using
two or more measurements have been based on a loss function introduced by Wahba 3'_.Shuster showed a simplification of

his QUEST algorithm for the two-observation Wahba problem s, but reference 6 presented the first explicit closed-form

solution. Optimal two-observation algorithms have not found widespread application, since they are significantly slower than
TRIAD. In fact, algorithms specifically developed for the two-observation case may require more computations than optimal

general purpose algorithms. Recent exceptions are Mortari's optimal EULER-2 algorithm 7, which approaches TRIAD in

speed, and a suboptimal algorithm proposed by Reynolds S. The present paper presents two new algorithms for quaternion
estimation from two vector measurements. The first is a very efficient optimal algorithm, which is as fast as the suboptimal

TRIAD algorithm. The second produces the same suboptimal estimate as TRIAD, but at reduced computational cost.
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_,V._,IIBA'S PROBLEM

Wahl_a's prohlem is to find the proper _rthogonal matrix A that minimizes the loss function

LiAr- +Z.,Ib,

whcrc [b, } is a set of n unit vectors in the spacecraft body frame. { r, } are the corresponding unit vectors in the reference

frame, and {a, } are non-negative weights. We use the invariance of the trace under cyclic permutations to rewrite Eq. (3) as

L(.4) = Y_i a, - trace(ABr), 1,4)

where

B - 2ia, b,r, r . (5)

Almost all solutions of Wahba's problem are based on the observation that the attitude matrix that maximizes trace(AB r)

minimizes the loss function. The original solutions solved for the attitude matrix A directly, but most practical applications

have been based on Davenport's q-method -'''_'9,which solves for the unit attitude quaternion m_

[ql' where [q[-'=l. (6)q= q4

There is a 2:1 correspondence between the quaternion and the rotation matrix R(e,¢) given by

+ Vesin(0/2) 1
q = - L cos(;/2) J (7)

and

A = R(e, 0) = (qJ -lql')z + 2qq T - 2q4[q x]. (8)

we will follow Shuster's convention for quaternion products n, writing

[ P l®[q 1 = [q4P+ P_q-pxqt (9)P®q = P4 q_ L P4q4 -P'q "

This differs from the historical convention in the sign of the cross-product, and has the advantage that the order of quaternion

multiplication is the same as the order of attitude matrix multiplication. Since the attitude matrix is a homogenous quadratic

function of q, we can write
tr(AB r) = qTKq (10)

where K is the symmetric traceless matrix

B+BT-ItrB y_/a,b, x r,] (11)K-- L_, a,(b, x r_)r trB "

The q-method finds the optimal quaternion as the normalized eigenvector of K with the largest eigenvalue, i.e.

Kqoo, -. A.....q_,r," (12)

There is no unique solution if the two largest eigenvalues of K are equal. This is not a failure of the q method; it means that

the data aren't sufficient to determine the attitude uniquely.

OPTIMAL QUATERNION ESTIMATION METHOD

In the two-observation case, it is useful to define the normalized cross products

r_ -(r, x r._)I1r, x _1 (13a)
and

b 3 _-1,b, x b:)/lb, x b_.l. (13b)

We n_)te that r_ or b._ is undefined if the reference vectors or the observed vectors, respectively, are collinear. This is the case
noted above in which there is insufficient information to determine the attitude uniquely. It can be seen from the explicit



solution6,geometricalreasoning7,orsimplythinkingaboutthelossfunctionofEq.(3)thattheoptimalestimatemustresultin
Ar l and Ar 2 being coplanar with bt and b2. This means that the optimal rotation maps the cross product vectors as

Aoptr3 = b3" (14)

The TRIAD estimate, although not optimal, always obeys this equation; but not all two-measurement estimates do 12.

The quaternion rotating r 3 into b3 with the minimum-angle rotation is, up to an overall sign,

q.,i,,=_2(l+b3.r3 ) l+b3.r 3 •

The most general rotation that maps r 3 into b 3 is the minimum rotation preceded by a rotation through an arbitrary angle Cr

about r 3and followed by a rotation through an arbitrary angle _b about b3. As observed by Reynolds 8, this has the quaternion

representation

+1 Vb3sin(0o/2)l® [ b3×r3 ]_[-r3sin(0,/2)-]
= c0s(¢/2) + qt8o sin(C/2), (16)

q= _[_ COS(_b/2) J Ll+b3'r3 l c°s(¢r/2) J q,,i,,

where ¢- _, + 0r and

, t
qlS0 = _/2(1 + b3 .r3)

The quaternion q,8o rotates the cross product vector r3 into the body frame vector b 3 by means of a 180 ° rotation about the
bisector of these two vectors.

Now we can find the optimal quaternion by finding the angle _ that minimizes Wahba's loss function. Using Eqs. (4), (10),

(16), and the half-angle formulas of trigonometry, we compute

L(A) = a_ + a2 - (1 + b 3 .r 3)-1 (a cos ¢ + flsin ¢), (18)

where

qfni. Kqmin T= --qt80 Kqlso = (1 +b 3 . r3)-lot (19)

and

q,TmKqts ° = qlsoKqmi.T = (1 + b 3 • !"3)-1fl, (20)

with

a - (1 + b 3 • r3)(alb I • r1 + a2b 2 • 1"2) + (b 3 × 1"3)" (albl × rl + a2b2 × 1"2) (21)

and

fl _- (b 3 + r3). (alb I × rj + a2b 2 × r 2). (22)

The loss function is minimized by setting cos_b = a/y and sine = fl/y, with

r -- + (23)

which gives

L(Aov_) = a I + a2 - (1 + b 3 •r3)<y. (24)

The attitude quaternion estimate requires half-angles. To avoid singularities, we use cos(¢/2) = _/+(1 + cos¢) and

sin(C/2) = sin ¢/_/2(1 + cos¢) when cos¢ _>0, and sin(C/2) = _/½(1 - cos¢) and cos(¢/2) = sin 0/_/2(1 - cos¢) when

cosq_ < 0. This gives, finally,

i I (y + ty)(b3 × r3) + fl(b3 + r3) ] for o_ > 0, (25a)

qov_ = 2._Ty + ct)(l + b3. r3) 1_ j(y + 0,)(1 + b3.1.3 )

and

1 Ifl(b3 x r3) + (Y - o')(b3 + r3)]q°P' = 2_-_'y-'- a)(1 + b 3 •r3) fl(l + b 3 •r3)
for o_< 0. (25b)



" -2" "_'_"

I'he ,werall sien ,,f the quaternion is irrelevant because of the quadratic nature of the attitude representation of Eq. 18). This

alg_rithm is very similar to Mortari's EULER-2 solution to the two-observation Wahba problem:, but it avoids explicit

trigonometric function evaluations.

REFERENCE FRAME ROTATIONS

The above expressions for all the components of the optimal quaternion go to the indeterminate expression 0/0 when

b, = -r_. This singular condition can be avoided by solving for the attitude with respect to a reference coordinate frame

reiated to the original frame by 180 ° rotations about the x, y, or z.coordinate axis 4"s'_3.That is, we solve for one of the

quaternions
FT___7___7F 7

q'
LoJ Lq_J LUJ L -q.e, j

v,here e, is the unit vector along the imcoordinate axis. These quaternion products are trivial to implement by merely

permuting and changing signs of the quaternion components. For example,

ql = [ql, q:, q3, q4] T ®[1, 0, 0, 0] T = [q4, - q3, q2, - ql] T- (27)

The equations for the inverse transformations are the same, since a 180 ° rotation in the opposite direction has the same effect.
These rotations are also easy to implement on the input data, since a rotation about axis i simply changes the signs of thej '_

and k_ columns ofr_, r2, and r3, where {i,j, k} is a permutation of { 1, 2, 3}.

The original QUEST implementation performed sequential rotations one axis at a time, until an acceptable reference

coordinate system was found. It is clearly preferable to save computations by choosing a single desirable rotation as early in
the computation as possible. Consider the effect on the inner product b 3 -r3 of rotating the reference frame about the fl' axis

(b3' rs) .......a = [(b3)i(r3)/- (b3)j (r3)j - (b3)k (r3)_ ]_rota_d = [2(b3)i(rs)i - b3" 1"3]...... a. (28)

We can maximize this inner product in the rotated frame by performing no rotation if b 3 • r 3 is the maximum of

{(b3 )i (1"3)i,(b3)j (1"3)_,,(b3)k (1"3)to,b3 "1"3}unrotated,while a rotation about the i_ axis is performed if (b 3)_(r3)_is the maximum.

This will ensure the largest value for b 3 • I"3 in the rotated frame. The rotation is easily "undone" by Eq. (27) or its equivalent

after the quaternion has been computed.

SUBOPTIMAL QUATERNION ESTIMATION METHOD

In the limit that the first measurement is far more accurate than the second, Eq. (la) is satisfied exactly. This is often the case

of interest, and is the case generally treated by the TRIAD algorithm L'. The quaternion estimate taking r, into b_ is given, in

analogy with Eq. (16), by

+sin(N/2) . (29)
42(1 + b_. r,) [c°s(v//2)Ll + b, .r_ 0

q

We compute the TRIAD-equivalent quaternion by finding the angle Cthat minimizes Wahba's loss function. In parallel with

the optimal case, we find

L(A) = a,[l -(b I " b2)(1.1 "_)-- (1 + b," 1.1 )-I(]-..L COS lff " 4- vsin t//) ], (30)

_,,here

and

_---(t + b,. rl)[(b I x b2).(r , x r_,)l-[bl .(rl x r2)][1.l .(bl xb,)]

v=(b. + rl).[(b , x b,_) x (r_ x r,)l.

The loss function is minimized by setting cos _ = 12/p and sin tY = v/p. with

p-4_ 2 +v a ,

_ hich gives

L(AlxIA D) = a_,[1 - (,b_ .b 2)(1"11"z) - (1 + b I . r L)-'p 1.

(3l)

(32)

(33)

(34)



Theattitudequaternionestimateis

qT,,AD = 2_' L (p+U)(I + b, .r,) j

and

for u>_0. (35a)

1 Iv(b, x r, ) + (,o - _)(b_ + r, )1
qTRI_ = 2_ [_ V(I + b, .r, ) ._ for fl < 0. (35b)

This estimate is less expensive to compute than the optimal estimate, since it is not necessary to normalize the cross products

r Lx r_, and b_ x b 2 . However. Eqs. (31) and (32) show that both/2 and v are zero and the estimate is undefined if either of
these cross products is zero, indicating collinearity of the reference or body frame vectors. The case of b_ = - r_ is handled by

reference frame rotations in the same manner as for the optimal estimate.

TESTS

MATLAB implementations of these algorithms were coded and tested. The computational speed of the new optimal

algorithm is 156 or 158 floating point operations, depending on whether or not a reference frame rotation is required. These

are exactly the same number of flops as used by the non-optimal TRIAD algorithm followed by the extraction of a quaternion
from the TRIAD attitude matrix. The effort for the optimal algorithm includes the computation of the loss function, which is

not provided by TRIAD, however. The suboptimal quaternion estimation algorithm required 107 or 109 flops, without

computation of the loss function.

For accuracy tests, we simulate 1000 test cases with uniformly distributed random attitude quaternions. For each attitude we

generate two random observation vectors, independently and uniformly distributed on the unit sphere. We use inverse of the

attitude quaternion to map the observation vectors to the reference frame. The reference vectors are corrupted by Gaussian

random noise with specified standard deviations and then normalized. The optimal estimation algorithm uses the inverse

squared measurement standard deviations as the weights in Wabba's loss function.

Two different test scenarios were simulated. The first scenario has measurement standard deviations of 1 arc minute per axis

on the first vector and 2 ° on the second, which would be appropriate for measurements of a fine digital sun sensor and a

triaxial magnetometer, respectively. The attitude estimation errors for this scenario, the rotation angles between true attitude

and the estimates, are plotted in Figure 1 as a function of [b I xb_ 1. Since the errors are expected to be roughly inversely

proportional to [b_ x b21, the errors have been multiplied by this quantity for plotting, allowing the errors to be plotted on a
more-or-less uniform scale for the entire range of angles between the observed vectors 6. The points for the suboptimal

estimation errors and the optimal errors fall on top of each other in Figure 1; they are indistinguishable at the plotting

accuracy. This was to be expected with the large the ratio of the measurement weights, 1202 , in this scenario.

The second scenario, shown in Figure 2, used equal measurement standard deviations of 2 ° on both, as would be appropriate

for measurements of a coarse sun sensor and a triaxial magnetometer. This scenario clearly exhibits differences between the

suboptimal optimal estimation errors. This is not surprising, since the difference between the suboptimal TRIAD estimator
and the optimal is greatest in the case of equal weights. Interestingly enough, the errors agree very closely when they are

greater than 20% as shown by the points above the diagonal line from (0, 0) to (0.7, 14) in Figure 2. These solutions with
large errors are not very useful, however. In fact, the figures show that two-observation estimators should not be used for

Ib_× b, I < 0.4 if it is desired to limit the estimation errors to be less than 10° in the first scenario or in 20 ° the second.

It appears that the optimal estimates have smaller errors than the TRIAD estimates in the second scenario, but this is difficult

to quantify by examining Figure 2. To establish the advantage of the optimal estimator, the probability distribution of

Ib_ x b., I times the estimation errors in 10,000 simulations of the second scenario are plotted in Figure 3. It is clear from this
figure that the optimal estimator offers only marginal gains over the TRIAD estimate. At the 95% confidence level, Ibt x b2[

times the errors of the optimal and suboptimal algorithms are less than 5.3 ° and 5.6 °, respectively; these scaled errors are less
than 6.7 ° and 6.9 ° at the 99% confidence level.



optimal (x) and suboptimal (o) estimates for sigma1 = 1 arcmin, sigma2 = 2 deg
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Figure I. Estimation errors in scenario with unequal measurement errors

CONCLUSIONS

We have found two new, fast quaternion estimation methods using exactly two vector measurements. These methods are

applicable to a variety of problems, including coarse "sun-mag" attitude estimation using the unit vector to the Sun and the

Earth's magnetic field vector and precise estimation using unit vectors to stars tracked by two star trackers. The first of the

algorithms is optimal in Wahba's sense and is as fast as the TRIAD algorithm, even including computation of Wahba's loss

function, which TRIAD does not provide. The second, suboptimal algorithm provides estimates identical to TRIAD with

reduced computational effort. The accuracy of these algorithms was examined in simulations of two scenarios, one with

equal measurement errors and one with errors differing by two orders of magnitude. These simulations show that the TRIAD

estimate is almost as accurate as the optimal estimate in both scenarios.
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optimal (x) and suboptimal (o) estimates for sigma1 = sigma2 = 2 deg
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Figure 2. Estimation errors in scenario with equal measurement errors
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